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HE hybrid particle method (HPM) is arecently developed parti-

cle based method for the solution of high-speed dynamic struc-
tural problems."? Increased stability® and accuracy' of the HPM
over colocational particle methods, such as the classical smooth
particle hydrodynamics,* has been demonstrated.

The HPM is based on the strong form of the conservation equa-
tions. In general, particle methods based on such equations and
that employ moving-least-squares (MLS) interpolants face difficul-
ties in finding accurate derivatives of stress components at natural
boundaries, such as stress-free surfaces and corners. This is because
of the presence of asymmetric or skewed neighborhoods at natural
boundaries. To increase precision, special numerical formulations
are required to impose proper stress-free surface conditions.? These
involve the tracking of the direction of the surface normal, which not
only increases the computational cost of the analysis but can also
prove to be cumbersome for three-dimensional analyses. Although
these tentative procedures for boundary treatment do provide ade-
quate results, it is of interest to derive more efficient procedures that
lend themselves to straightforward implementation.

The explicit finite element method (FEM) is based on the weak
form of the conservation equations. It does not require the explicit
calculation of stress derivatives on natural boundaries. Thus, the
difficulties associated with the treatment of boundaries using the
HPM are not present in explicit FEM. We propose an approach
in which the motion points of the HPM that lie on natural bound-
aries are treated based on the explicit FEM. The formulation of this
approach is simple and does not require either the tracking of the
surface normal or the explicit enforcement of the stress-free surface
conditions.
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II. HPM Formulation

The HPM uses as its basis the differential form of equations for
the conservation of momentum, mass, and energy, respectively. The
formulation employs two types of points to facilitate computations.
These are the motion points (mps) and the stress points (sps), re-
spectively. The motion points are locations where the momentum
is balanced and where the accelerations, velocities, and displace-
ments are computed directly using the central difference method.
The stress points are locations where velocities are obtained explic-
itly through direct interpolation from the surrounding motion point
neighborhood.' Stress histories are tracked at both the motion points
and the neighboring stress points.

The solution algorithm for the governing equations within a time
step including contact treatment is described elsewhere.> A brief
review of the solution procedure within the time step (¢*, t"*1) is
as follows:

1) Compute the acceleration a at each motion point at time " by
the direct use of the momentum conservation relation. The deriva-
tives of the stress components in this relation are computed through
MLS interpolations over surrounding stress-point neighbors.

2) Given the acceleration a, compute both the velocity v at " +1/2,
where t"*1/2 = (" 4+ ") /2, and the position vector x at time ¢" '
for each motion point using the central difference method.

3) Compute the velocity v for each stress point at time "+ /2 by
interpolation from velocities of neighboring motion points.

4) For each mp and sp, a) find the specific volume V by using the
difference form of the conservation of mass; b) compute the pres-
sure p using either the equations of state (EOS) or bulk Hooke’s law,
and calculate the deviatoric stress S using the appropriate constitu-
tive relations; c) compute the stress tensor from the pressure and
deviatoric stress in b; and d update energy and artificial viscosity.

5) Calculate the next time step using the Courant condition, set
t=¢"*1, and return to step 1.

III. FE-Based Motion Points

Step 1 of the HPM formulation requires the use of MLS inter-
polants to compute the derivatives of certain stress components at
each motion point. For motion points located on natural bound-
aries, such as the stress-free surfaces or corners, the use of MLS
interpolants in computing these derivatives leads to a lack of accu-
racy because skewed stress-point neighborhoods exist for these mo-
tion points.! For three-dimensional problems, skewed-stress point
neighborhoods need to be dealt with for motion points on stress-free
surfaces, stress-free edges (intersection of two stress-free surfaces),
and stress-free corners (intersection of three or more stress-free
surfaces).

Explicit FEM uses stresses at integration points and the shape
functions of the surrounding elements to compute the acceleration
at an element node and does not require the explicit calculation
of stress derivatives. We propose that the pseudocells in the HPM
be viewed as finite elements with the motion points correspond-
ing to the pseudocells forming the nodes of these elements. The
stress points that lie within a pseudocell can serve as the integration
points for the finite elements. This concept is illustrated for two
dimensions in Figs. 1a and 1b. The relations developed for calcu-
lating accelerations at nodes using explicit FEM can now directly
be used to calculate accelerations at motion points instead of using
the MLS interpolants. The motion points whose accelerations are
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Fig. 1 Illustration of the concept of the FE-based motion points: a)
motion point and its stress-point neighbors; each stress point is located
at the center of the pseudo cell; b) viewing pseudocells as finite elements;
the acceleration of the FE-based motion point can be computed by using
explicit FEM relations; and c) use of FE-based motion points on the
stress-free boundary.

calculated using explicit FEM are referred to here as the FE-based
motion points. The special treatments proposed in the literature for
the HPM to cope with the asymmetrical neighborhoods are no longer
needed in cases where FE-based motion points are employed.

A. Accelerations at Element Nodes by Using Explicit FEM

By using the customary FE-based shape functions, the ve-
locity and the variation in displacement at x can be expressed,
respectively, as

v = N,(x)vg, 6x = N, (x)dx,, summationon « (1)

where o = 1, N¥; N¥ is the number of nodes per element; N, vy,
and x, are the shape function, the velocity vector, and the position
of the node «, respectively; and § denotes variation. Substituting the
preceding relations into the weak form of momentum conservation
and employing a lumped mass approach’ leads to

. 1 / 1
Ve = ——— | ograd N, dQ—f——f hN, dl’
a M, o a M, o a

no summationon « (2)

where 2 is the domain of the body; I';, is the natural boundary
with traction k specified; p is the density; 8 =1, N£; and M, is the
lumped mass at node o.

B. FE-Based Motion Points

If the elements used in the FEM are all constant-strain triangles
and a one-point quadrature rule is used to perform the integrations,
Eq. (2) becomes

Nj

N.
. 1 < 1
Ve =0 Z Aoy grad Noj) + A Z Lighyg Ny (3)

i=1 k=1

where N; is the number of elements that have the node o as one
of their nodes; N, is the number of elements that have at least one
edge on the boundary and have the node « as one of their node; Ay
is the area of element j; oy;) is the stress at the integration point
of element j; Ng.;; is the shape function of node o in element j;
Ly is the length of the element edge k; and hy; and N(fm are the
traction and the shape function N, evaluated at center of the edge
k, respectively.

Equation (3) can be used in step 1 of the HPM formulation to
compute accelerations at motion points on the boundaries. Figure 1c¢
illustrates the use of such a motion point on a stress-free surface.
Stress-free corners, surfaces with applied tractions, and the interior
of a domain can all be similarly treated. By viewing pseudocells in
the HPM setup as elements, the terms related to element shape in
Eq. (3), that is, the areas and shape functions, can be computed based
on the deformed shape of the corresponding pseudocells. The stress
at the integration point of a certain element is provided by the stress
at the stress point of the corresponding pseudocell. This is possible
because the stress point is located at the centroid of the pseudocell,

the same location where the integration point of the corresponding
constant strain element is located.

IV. Stability of FE-Based Motion Points

For transient problems, the stability of explicit methods is a major
concern for both the HPM and FEM.’ The FEM is based on a weak
formulation. Using eigenvalue analysis, the stability analysis of the
explicit FEM leads to an estimation of the maximum time step A¢
for the stability of individual elements. For particle methods that are
based on the strong form of the momentum conservation equation,
“windows” of stability® exist when the method 1) employs both mo-
tion and stress points and 2) uses MLS to find the stress derivatives
and velocity gradients. Different windows of stability for different
motion points prevent the use of a uniform time-step size for the
entire model.

In HPM, we have found that parametrically locating the stress
points within pseudotriangular cells in two dimensions and tetrahe-
drons in three dimensions exhibits good stability for deformations
that do not entail a change of neighborhoods for particles. This al-
lows rather simple stability calculations to be performed by employ-
ing a time-step calculation method (step 5 of the HPM formulation)
based upon distance A, and, as important, the use of a single Az
for the entire model. Once the deformation levels require the evo-
lution of at least some of the neighborhoods, then the stress points
in those areas of the model must be “unlocked” and tracked explic-
itly. More complex stability calculations must then be performed,
and the predictor-corrector methods® might be needed to enlarge the
windows of stability.

For deformation levels in which neighborhoods are not evolving,
the stable critical time steps for an HPM analysis are smaller than
those calculated in the pure FEM when the subcells in the HPM
analysis are viewed as elements in the FEM analysis. The HPM
uses the minimum distance between motion points and their stress-
point neighbors to calculate the time step, whereas the FEM uses
the minimum length of element edges to calculate the time step. The
length of an element edge can also be viewed as the distance be-
tween motion points and their motion-point neighbors. Apparently,
the distance between motion points and their stress-point neigh-
bors is shorter than the distance between motion points and their
motion-point neighbors. As a result, incorporating FE-based mo-
tion points does not compromise the stability of the HPM. The dis-
tance from FE-based motion points to their respective neighboring
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Fig. 2 Comparison of displacement histories for two-dimensional
plane strain elastic impact: a) horizontal displacement history of cor-
ner point A and b) vertical displacement of point B. HPM results are
obtained where all motion points on the boundary are FE based.
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Fig. 3 Comparison of displacement histories for two-dimensional
plane-strain inelastic impact: a) horizontal displacement history of cor-

ner point A and b) vertical displacement of point B. HPM results are
obtained where all motion points on the boundary are FE based.

stress points will no longer be needed in calculating the time-step
length.

V. Numerical Examples

The complete stress-free surface treatment for curved surfaces in
HPM is not available yet. This limitation can be removed by employ-
ing FE-based motion points on the boundaries. In the present study,
only the stress-point neighbors are used in calculating the stress
derivatives. Also, Neumann—Richtmyer viscosity formulation? is
used with linear and quadratic viscosity coefficients of 0.05 and 1.0,
respectively. The contact algorithm used for these analyses has been
presented earlier.”

A body under plane-strain conditions and coming in contact with
a flat rigid wall as shown in Fig. 2 is considered. The body travels
toward the rigid wall with a speed of 2 x 10° cm/s. The body is dis-
cretized using 40 x 40 rectangular cells and a triangular pseudocell
arrangement. The stress points are located at the centroids of the
subcells and are tracked parametrically. All motion points on the
boundary are treated using the FE-based methodology presented in
this Note.

The body is first assumed to be made of elastic material with
an elastic modulus of 2 x 107 N/cm? and Poisson’s ratio of 0.3.

Numerical solutions to this problem are obtained using the HPM
formulation and the commercial explicit FE code LS-DYNA, re-
spectively. A comparison of the displacement histories is shown in
Figs. 2a and 2b, respectively. The body is next assumed to be made
of inelastic material with linear isotropic work hardening. The tan-
gential modulus and the yield stress are chosen to be 6.67 x 10*
and 6.803 x 10* N/cm?, respectively. Comparisons of displacement
histories are shown in Figs. 3a and 3b, respectively. A close agree-
ment between the results of the HPM and the explicit FEM for both
elastic and inelastic impact is observed.

VI. Summary

Finite element (FE)-based motion points are developed for use in
particle methods. These motion points are advantageous for bound-
ary treatment in the hybrid particle methods. The resulting approach
considers boundary motion points as finite element nodes, whereas
the neighboring stress points are considered as the integration points
of an explicit finite element method (FEM) formulation. The stabil-
ity of employing FE-based motion points is discussed. Numerical
results are presented to demonstrate the feasibility, accuracy, and
stability of the present development. These developments can facil-
itate methodologies to combine the hybrid particle method and the
explicit FEM in a single analysis.
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